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Distinct types of fish species experience variation in somatic growth rates over their life span; however, growth has historically been assumed
to be invariant across time and space in integrated analysis-based stock assessment. A few previous studies have reported biased and imprecise
assessment model outcomes when variability in somatic growth was ignored. In this study, we used a simulation-estimation framework to expand
previous analyses and to examine the consequences of ignoring or incorporating spatial and temporal (year- and cohort-specific) variability
in somatic growth in stock assessment models. The study included three life history types: small pelagic (e.g. sardine), gadids (e.g. cod), and
long-lived (e.g. rockfish). In general, ignoring any type of variability in somatic growth led to biased and imprecise estimates of stock spawning
biomass and management quantities. Unequal distribution of fishing mortality across space had large impacts on the performance of estimation
models as well. Conversely, accounting for somatic growth variability, either by including an environmental index, estimating annual deviates, or
implementing a spatially explicit model, produced unbiased and precise results. This study shows that somatic growth variability might produce
large effects in stock assessments when ignored and provides pertinent information for stock assessment best practice guidelines.
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Introduction
A stock assessment model is a mathematical representation of a fish
population dynamic (e.g. birth, natural and fishing death, growth,
maturation, and movement) used to evaluate the effects of har-
vest policies on its biological status relative to biological references
points (Beverton and Holt, 1957; Methot and Wetzel, 2013). Inte-
grated analysis (IA) is a type of stock assessment model that became
popular at the end of the 20th century and fits the model to sev-
eral sources of data simultaneously in a single analysis (Fournier
and Archibald, 1982; Maunder and Punt, 2013). One of the most
used IA tools is Stock Synthesis (SS), a flexible statistical catch-at-
age modelling framework applied to numerous fish stocks world-
wide (Methot and Wetzel, 2013). SS’s main strength is to estimate

numerous biological parameters at once to capture the complexity
of a fish population; however, it is susceptible to model misspecifi-
cation as any stock assessment model (Maunder and Punt, 2013).
To further evaluate impacts of model misspecification in statisti-
cal catch-at-age models, SS and ss3sim, an R package to perform
simulation experiments (Anderson et al., 2014), have been used to
study the performance of stock assessment models under differ-
ent assumptions about natural mortality, somatic growth, and data
quantity (Johnson et al., 2015; Ono et al., 2015; Monnahan et al.,
2016; Lee et al., 2018; Stawitz et al., 2019).

Fish populations experience variations of biological parameters
due to intra- and interspecific interactions, or changes in environ-
mental conditions (Shelton and Mangel, 2011), which may nega-
tively impact the performance of a stock assessment method if they
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are neglected (Keyl and Wolff, 2008). Variation in somatic growth is
an important driver of population fluctuations, in some cases as im-
portant as variability in recruitment (Stawitz and Essington, 2018),
and has been documented for many fish taxa (Gertseva et al., 2017;
Adams et al., 2018; Ciannelli et al., 2020). To study variations in so-
matic growth, changes in mean size-at-age across time and space
are usually examined, which are generally caused by variations in
the Brody growth coefficient (k) or asymptotic length (L∞) of the
von Bertalanffy growth function (Gertseva et al., 2017; Adams et
al., 2018).

There are two main ways of how the mean size-at-age can vary
temporally within a stock: changing systematically for all ages of
fish individuals born in a particular year, known as cohort-specific
(Feltrim and Ernst, 2010), or for all fish during a particular year,
known as year-specific (Arnekleiv et al., 2006). Triggers of these
types of variability are not typically known and are not easily dis-
cerned, but some contributing factors may be (i) conditions in
early-life stages, which might determine cohort growth rates in the
future (Ciannelli et al., 2020); (ii) genetic, where slow-growing an-
cestry might likely have a slow-growing offspring; (iii) density de-
pendence, high biomass might reduce growth rates for a cohort or
year class (Rijnsdorp and van Leeuwen, 1996); (iv) fishing pres-
sure, through the selection of larger individuals, which decreases
the mean length-at-age of the population but increases per-capita
resource availability leading to plastic, compensatory increase in ju-
venile somatic growth (Lester et al., 2014; Wilson et al., 2019); and
(v) environmental conditions, temperature, and high food supply
increases the metabolism; and therefore also increases growth rates
within a particular year (Kreuz et al., 1982; Baudron et al., 2014).

Historically, fish stock assessment models have rarely accounted
for variations in somatic growth rates, assuming it was static
through time (Whitten et al., 2013). Previous studies have demon-
strated that ignoring temporal variations in somatic growth rates
may lead to serious bias in spawning biomass and management
quantities for some species (Lee et al., 2018; Stawitz et al., 2019).
Likewise, stock assessment models have commonly assumed that
the region to be assessed contains a single homogeneous stock
(Cadrin, 2020), seldom a valid assumption. There is scarce informa-
tion about how the misspecification of spatial variability in somatic
growth might affect estimates of the status of stock despite the in-
creasing evidence of spatial variability in growth for a wide variety
of species (Silva et al., 2008; Gertseva et al., 2010, 2017). Two pre-
vious studies reported large bias in biomass estimates when spatial
variability in somatic growth was ignored for pink ling (Genypterus
blacodes) off southern Australia (Punt et al., 2015, 2016). The imple-
mentation of spatially explicit stock assessment models to account
for spatial variability in biological traits has become a topic of study
in recent years, with several studies showing scenarios where esti-
mation performance was improved compared to single-area models
(McGilliard et al., 2015; Vigier et al., 2018; Punt, 2019). Neverthe-
less, it is still unclear how ignoring spatial variation in biological pa-
rameters such as somatic growth and other model components (e.g.
fishing mortality) may affect model outcomes for different types of
species.

The main goal of this study is to evaluate the consequences of
ignoring spatial or temporal variability in somatic growth in stock
assessment models across three types of life histories: small pelagic
(e.g. sardine), gadids (e.g. cod), and long-lived (e.g. rockfish). To ac-
complish our goal, we implemented a simulation experiment that
consisted of comparing key variables from the operating model
(OM), which represents the true population dynamics, with those

from the estimation models (EMs), which were fit to data sampled
from the OM. Mean size-at-age was assumed to vary temporally
based on the annual Pacific Decadal Oscillation (PDO) index or
spatially between two areas. We also evaluated the impacts of (i)
year- and cohort-specific temporal variability, (ii) the estimation
method when the EM accounted for temporal variability (inclusion
of an observed environmental index or estimation of annual devi-
ates), and (iii) the distribution of fishing mortality between areas.
This study provides guidelines for stock assessment scientists and
expands previous investigations in somatic growth variability and
stock assessment models by including diverse life histories, types
of temporal variability, estimation methods, and spatial variability
scenarios, making it useful for a wide range of study cases.

Material and methods
Simulation approach
We implemented a simulation experiment as done in previous stud-
ies (Johnson et al., 2015; Ono et al., 2015; Lee et al., 2018). Each
combination of OM and EM is referred to as a scenario and con-
sists of the following four steps: (i) simulate the true population
dynamics with process error in recruitment (and growth in some
cases) across years by the OM, (ii) sample from the OM dynam-
ics with observation error, (iii) fit the EM to sampled data, and (iv)
compare estimates of relevant quantities with the true values sim-
ulated by OM. These steps were repeated many times (replicates)
with different process and observation errors for each scenario.
This simulation-estimation approach was performed using SS (ver-
sion V3.30.14; Methot and Wetzel, 2013) for both the OM and the
EM. Full details on SS can be found in Methot and Wetzel (2013)
and Methot et al. (2020). We conducted our analysis in R (version
3.6.1; R Core Team, 2019), using the stock assessment simulation
framework ss3sim (Anderson et al., 2014). The model configura-
tions and code to run and process these analyses are available online
(https://github.com/gmoroncorrea/spatiotemporal_growth).

The operating model
OM configurations were generally based on simplified versions of
recent stock assessment models of the Pacific sardine (Sardinops
sagax) in the California Current System (CCS; Hill et al., 2015),
Pacific cod (Gadus macrocephalus) in the eastern Bering Sea (EBS;
Thompson and Thorson, 2019), and splitnose rockfish (Sebastes
diploproa) in the CCS (Gertseva et al., 2009) (referred as sardine,
cod, and rockfish hereafter for simplicity). These and similar species
have shown significant spatiotemporal variability in somatic growth
(Silva et al., 2008; Black, 2009; Feltrim and Ernst, 2010; Gertseva et
al., 2010; Dorval et al., 2015; Ciannelli et al., 2020), which makes
them suitable examples to represent a wide variety of life histo-
ries for this study. The intention in using a simplified version of
stock assessments for these three species was to capture a variety
of typical life history traits in OM configurations, each of which
may affect the performance of various stock assessment approaches,
rather than focusing on modelling any specific species. All OM con-
figurations were age-structured with sexes combined and assumed
a Beverton–Holt stock–recruitment relationship. One fishery and
one survey were assumed when the OM simulated a single area
(e.g. base and temporal variability cases), and two fisheries and two
surveys were assumed when the OM simulated a two-area model
(e.g. spatial variability cases; Figure S1). For the latter case, no
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Table 1. Life history, fishery, and modelling parameters used in the OM and specified as initial values in the EM.

Parameter Symbol Sardine Cod Rockfish Estimated? Lower Upper
bound bound

Number of simulated years –    – – –
Burn-in period (year) – – – – – – –
Natural mortality (year−1) M . . . Yes  
Mean length-at-age a1 (cm) L1 . . . Yes  
Youngest age well represented in data (year) a1 . . . – – –
Asymptotic length (cm) L∞ . [.–.] . [–]  [.–.] Yes  
Growth rate (year−1) k . [.–.] . [.–.] . [.–.] Yes  
Accumulator age (year) amax    – – –
SD of L1-at-a1 (cm) SD1 . . . Yes  
SD of L∞-at-amax (cm) SD2 . .  Yes  
Link parameter: Envindex parenv    Yes − 
Link parameter: deviates devse . . . No – –
Scaling constant for weight-length (kg.cm−�2 ) �1 .e- .e- e- No – –
Allometric factor weight-length (−) �2 . . . No – –
Length-at-% maturity (cm) �3 .  . No – –
Maturity slope (cm−1) �4 −. −. −. No – –
Steepness (−) h .  . No – –
Log mean recruitment at unfished level (−) LnR 0 . . . Yes  
Recruitment deviation (−) σR . .  No – –
Log survey catchability coefficient LnQ    Yes − 
Mean fishery size-at-% selectivity (cm) β1, f  .  Yes  
Fishery size selectivity slope (cm) β2, f    Yes  
Mean survey size-at-% selectivity (cm) β1,s    Yes  
Survey size selectivity slope (cm) β2,s   . Yes  
Sample size for fishery length composition data ηffsh    – – –
Sample size for survey age composition data ηsurv    – – –
Coefficient of variation for the survey index of

abundance (−)
CV surv . . . – – –

Overdispersion parameter for the fishery length
composition data

cpar    – – –

Values in brackets are specified when the OM simulated spatial variability (two-areas models) for Area  and , respectively.

differences in fleets features (e.g. catchability, observation error
structure and variance, selectivity) were simulated between areas.
Process error was included in the OM by adding independent, bias-
corrected lognormal random deviates to the recruitment time se-
ries. Selectivity was assumed to be logistic, size-based, and time and
space-invariant. Survey catchability was assumed to be 1. Parame-
ters for each life history configuration were based on values speci-
fied in stock assessment models and are reported in Table 1.

We modelled somatic growth using the specialized von Berta-
lanffy growth function (Schnute, 1981), as parametrized in SS.
Mean size-at-age at the initial population (i.e. unfished equilibrium
population) is calculated from

La = L∞ + (Lmin − L∞) e−k(a−a1 ), (1)

where k is the Brody growth coefficient (year−1), L∞ is the
asymptotic length (cm), La is the mean size (cm) of fish at age a,
a1 is the youngest age that is well-represented in the data, and Lmin
is the size (cm) at a1. SS linearly interpolates the size of fish younger
than a1, adjusts the mean size of fish within the accumulator age,
and normally distributes lengths at each age around a mean size
(Appendix A in Methot and Wetzel, 2013). Then, mean size is in-
cremented across years as

Ly+1,a+1 = Ly,a + (
Ly,a − L∞

) (
e−k − 1

)
γc, (2)

where y stands for years and γc is a cohort-specific multiplier (co-
hort c = y − a), which is assumed to be 1 unless cohort-specific
variability is modelled.

Spatial variability in somatic growth
To simulate changes in mean size-at-age in space, we varied k and
L∞ between two areas (Table 1). For these cases, the OM simulated
two-area models that assumed no movement post-settlement with
global recruitment, followed by equal distribution of new recruits
across the two areas (Figure 1A). Fish individuals in Areas 1 and 2
always had smaller and larger mean size-at-age at any age, respec-
tively (Figure 2).

Temporal variability in somatic growth
To create temporal changes in mean size-at-age, k, or L∞ varied
across years for year-specific temporal variability (k turned into ky

and L∞ into L∞y in Equation 2). ky and L∞y were simulated as

ky = k ∗ exp
(
PDOsty

)
and L∞y = L∞ ∗ exp

(
PDOsty

)
,

where PDOst is the annual Pacific Decadal Oscillation
(PDO, Figure 1C) index (Newman et al., 2016) standardized
between defined ranges to obtain minimum and maximum mean
sizes-at-ages over years as shown in Figure 2.
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Figure 1. (a): Spatial structure assumed in the OM when simulating two areas: recruitment is distributed evenly between areas (–%). Area
 (blue) had smaller individuals while Area  (red) had larger individuals at any age. There is no movement between areas after settlement. (b):
Pattern of instantaneous fishing mortality (F) over time for the three types of life history. (c): The annual PDO index, used to simulate year and
cohort-specific temporal growth variability in the OM. Distinct life histories used different parts of the PDO time series, but the burn-in period
always had zero values (i.e. no variability).

To model cohort variability in growth, γc in Equation 2 varied
over years as

γc = exp
(
PDOsty

)
,

where PDOst was standardized accordingly to obtain a minimum
and maximum variability over cohorts as shown in Figure 2.

The magnitude of simulated variability in mean size-at-age var-
ied across life histories and was based on published literature (Silva
et al., 2008; Gertseva et al., 2010; Dorval et al., 2015; Ciannelli et al.,
2020) (Figure 2).

Data generation
The OM generated four types of data: catches, survey index of
abundance, fishery length composition, and survey age composi-
tion (Figure S1). Fishing was initiated after a “burn-in” period that
varied across life histories (see Table 1); and catches were reported
for all years without error. Catches were specified using an instan-
taneous fishing mortality time series (referred Fvals hereafter, vals
stands for “F values”) that increased linearly in time to Fhigh, the
value that led to catch at equilibrium of 0.9 MSY on the right limb
of the production curve (Fhigh > FMSY), and then decreased linearly
to Flow, the value which leads to an equilibrium catch of 0.9 MSY on
the left limb of the production curve (Flow < FMSY) (“two-way trip”
pattern, Magnusson and Hilborn, 2007) (Figure 1b). For two-area
OM configurations, distinct Fvals between areas were evaluated:

(i) Fvals is the same for both areas (100–100% case, equal distri-
bution).

(ii) Fvals is multiplied by 0.1 for Area 2 (100–10% case, unequal
distribution).

(iii) Fvals is multiplied by 0.1 for Area 1 (10–100% case, unequal
distribution).

The abundance index was generated using a lognormal distri-
bution with a standard deviation (Table 1). Fishery length com-
positions were simulated for all years with positive catches and

sampled from a Dirichlet distribution to account for non-random,
overdispersed catch-at-length samples. The overdispersion sample
size multiplier, c, was set to 2 for sample sizes of 100. Survey age
compositions were generated from a multinomial distribution that
assumed homogeneous capture probabilities across ages and per-
fect mixing of fish individuals. Age composition was simulated for
all years with abundance index information and sample sizes set to
100.

The estimation model
Estimated parameters in EM configurations were growth param-
eters, natural mortality (M), unfished recruitment (R0), survey
catchability, and selectivity parameters (see Table 1 for details). All
other parameters were fixed at their true values. We applied a pro-
cedure to correct for bias in estimated recruitment deviations that
can arise in a penalized likelihood framework (Methot and Taylor,
2011). To do this, we first ran 25 replicates and estimated bias ad-
justment parameters, and then used the average of those parameters
for all replicates of a scenario (e.g. Monnahan et al., 2016). Propor-
tions of replicates with an invertible Hessian are reported in Table
S1. EM sample sizes were configured with the correct effective sam-
ple size: 100/22 for the fishery (sampled from a Dirichlet distribu-
tion; Aanes and Pennington, 2003; Ono et al., 2015) and 100 for the
survey (sampled from a multinomial distribution). EM parameters
were initialized at the true parameter value, except for the recruit-
ment deviations (initialized at zero). No other priors were specified
for any parameters other than the bounds (uniform priors).

Spatial variability in somatic growth
The EM configurations used three approaches when the OM simu-
lated spatial variability in somatic growth:

(i) Aggregated approach: the EM ignored spatial variability in
mean size-at-age by implementing a single area model that aggre-
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Figure 2. Simulated difference in the mean size-at-age in the OM. Row : spatial variability. Row : year-specific temporal variability (k). Row :
year-specific temporal variability (L∞). Row : cohort-specific temporal variability (γc). Gray lines are the mean size-at-ages for different years
(rows  and ) and cohorts (row ).

gated data generated data by the OM before fitting: (a) catches were
summed, (b) abundance indices were summed, and (c) length and
age compositions were summed per bin, weighted by their respec-
tive catch or index of abundance (Punt et al., 2015). Therefore, a
unique k and L∞ were estimated.

(ii) Areas-as-fleets approach: the EM ignored spatial variability in
somatic growth by implementing a single-area model, but fishery
and survey data generated by the OM were not aggregated and the
data for each area were assumed to be associated with a different
fleet, each with its selectivity parameters (Waterhouse et al., 2014).
Therefore, a unique k and L∞ was estimated.

(iii) Spatially explicit approach: the EM implemented spatially ex-
plicit models (areas matched to those simulated in the OM); there-
fore, data aggregation was not required and spatial variability in
mean size-at-age was accounted for (i.e. k and L∞ were estimated
by area). Catchability and selectivity parameters were estimated by
fleet (Figure S1) and the distribution of recruitment between areas
was fixed at the true values (0.5 for each area).

Trends in the differences in simulated abundance indices be-
tween areas used by the EM were also explored to examine how the

distribution of fishing mortality and the spatial variability in mean
size-at-age impact these indices.

Temporal variability in somatic growth
We evaluated three approaches when the OM simulated temporal
variability in somatic growth:

(i) Constant assumption: temporal variations in mean size-at-age
was ignored by assuming constant k or L∞ over time.

(ii) Including an observed environmental index: included an envi-
ronmental index (Env index), which was linked to k or L∞ for the
year-specific variability as

ky = k ∗ exp
(

parenv ∗ Env indexy
)

or

L∞y = L∞ ∗ exp
(

parenv ∗ Env indexy
)

and to the γc parameter for the cohort-specific variability as

γc = exp
(

parenv ∗ Env indexy
)
.
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Table 2. Main scenarios evaluated for the three types of life histories.

Operating model Estimation model

Spatial variability only
in fishing mortality

Equal F Constant
Areas-as-fleets
Spatially explicit

F: –% Constant
Areas-as-fleets
Spatially explicit

F: –% Constant
Areas-as-fleets
Spatially explicit

Spatial variability
in fishing mortality
and somatic growth

Equal F Constant
Areas-as-fleets
Spatially explicit

F: –% Constant
Areas-as-fleets
Spatially explicit

F: –% Constant
Areas-as-fleets
Spatially explicit

Temporal variability
in somatic growth

Year-specific: variability in k Constant
Env index
Deviates

Year-specific: variability in L∞ Constant
Env index
Deviates

Cohort-specific: variability in γc Constant
Env index
Deviates

The parenv parameter is estimated by the EM and Env index
is an “observed” environmental index (see Appendix A for more
details about its derivation).

(iii) Estimating deviates: We estimated multiplicative deviates for
every year or cohort as follows:

ky = k ∗ exp
(
devse ∗ devy

)
or

L∞y = L∞ ∗ exp
(
devse ∗ devy

)

for the year-specific variability and

γc = exp
(
devse ∗ devy

)

for the cohort-specific variability. devy values were estimated by
year and devse was fixed at 0.5.

Scenarios
We grouped scenarios as “Spatial variability” or “Temporal variabil-
ity,” summarized in Table 2. We also evaluated a “base” scenario (or
“self-test”), that consisted of comparing a single-area OM that as-
sumed no variability in somatic growth to an EM that was correctly
specified. Likewise, the “Spatial variability” scenarios was divided in
two groups: in the first group, the OM simulated variability in fish-
ing mortality but not in somatic growth, and, in the second group,
the OM simulated variability in somatic growth and fishing mortal-
ity. We did this with the aim to separate effects of fishing mortality
and growth variability on model outcomes.

Model convergence and performance
As in Monnahan et al. (2016), convergence checks used in real cases
(e.g. inverting Hessian as done when we estimated bias adjustment
parameters) are impractical at the scale of this simulation exper-
iment. Therefore, we considered a model to have converged if it
reached a maximum gradient less than 0.01 and no parameters were
estimated to be on bounds.

Every scenario consisted of 100 convergent replicates, checking
that stability was reached for quantiles 2.5, 50, and 97.5% of SSB
estimates. For each replicate, we calculated the relative error (%, RE)
by comparing, between the OM and EM, spawning biomass time
series (SSB), L∞, k, M, recruitment at unfished levels (R0), and two
management quantities: B/Bmsy, spawning biomass in the terminal
year (B) over spawning biomass at the maximum sustainable yield
(Bmsy), and F/Fmsy, harvest rate (in biomass) in the terminal year
(F) over harvest rate at the maximum sustainable year (Fmsy). Bmsy
and Fmsy were calculated using parameters in the last year. RE was
calculated as

RE =
(
θ̂ − θ

)

θ
∗ 100%,

where θ̂ represents the value estimated by the EM and θ the true
value specified in the OM. To evaluate the EM performance, we
summarize the 100 RE values in these two metrics: median RE (a
measure of bias), and coverage of the 95% of the RE distribution
(a measure of precision). When comparing area-specific outcomes
between the two-area OM and single-area EM, the EM estimates
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Figure 3. Time series of RE in estimated spawning stock biomass (SSB) over time for scenarios when the OM simulated two areas with only
variability in fishing mortality. The black line represents the median, while the gray shaded area represents the % quantile. The horizontal
dotted line represents no bias over the time series would occur. The OM and EM configurations are on the left. “Aggreg” = Aggregated
approach. “A-a-F” = Areas-as-fleet approach. “Sp. expl.” = Spatially explicit. Years do not include the burn-in period and vary by life-history
(see Table ).

were repeated twice, i.e.

RE1 =
(
θ̂1 − θ1

)

θ1
∗ 100%, RE2 =

(
θ̂1 − θ2

)

θ2
∗ 100%,

where the subscripts stand for areas.

Results
The EM configurations that ignored spatial or temporal variability
in somatic growth generally led to biased and imprecise estimates.
When the EM accounted for these types of variability, by imple-
menting a spatially explicit model, including an environmental in-
dex, or estimating annual deviates, their performance was substan-
tially improved.

We found stable results for SSB estimates when running 100 con-
vergent replicates per scenario (Figures S2–S10). The base (self-test)
scenario displayed unbiased and relatively precise estimates for the
three types of life histories (Figure S11), although the precision was
generally lower for sardine and rockfish.

Spatial variability
We observed that spatial distribution of fishing mortality and so-
matic growth impacted the indices of abundance simulated by the
OM. When variability in somatic growth was absent, an even fish-
ing mortality distribution produced similar indices of abundance
in both areas, but an unequal distribution decreased the index of
abundance in the area with higher fishing mortality (Figures S12–
S14). When somatic growth variability was present, the area with
smaller or larger mean size-at-ages produced a lower or higher in-
dex of abundance, respectively.

Aggregated approach
When fishing mortality was equally distributed, this approach led to
unbiased and precise estimates in all model outcomes for the three
types of life histories, regardless of whether spatial variability in so-
matic growth was present (Figures 3–6). However, only when vari-
ability in somatic growth was present, growth parameters (L∞ and
k) were estimated in-between the true values (Figures 4 and 6).

An uneven distribution in fishing mortality negatively impacted
the performance of this approach. When somatic growth was not
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Figure 4. Median (point) and % quantiles (lines) of RE in compared model outcomes. The OM simulated two areas with only variability in
fishing mortality. The horizontal dotted line represents no bias over the time series would occur. The OM and EM configurations are on the left.
“Aggreg” = Aggregated approach. “A-a-F” = Areas-as-fleet approach. “Sp. expl.” = Spatially explicit. Blue, red, and black colour represent RE
values for Area , Area , and the entire area, respectively.

simulated, the F:100%:10% and F:10%:100% cases led to very simi-
lar results, reporting imprecise SSB estimates for sardine and rock-
fish and overestimation in SBB for rockfish (∼ +20%) (Figure 4).
We also observed overestimation (∼ +25%) in k for sardine and
cod, and overestimation (∼ +20%) in B/Bmsy and underestimation
(∼ −20%) in F/Fmsy for cod and rockfish (Figure 4). When somatic
growth was present, the imprecision in SSB estimates increased
and k was generally overestimated, especially for sardine and cod.
Also, large bias in R0 was detected for cod cases (∼ ±50%). Man-
agement quantities continued reporting biased estimates (<40%),
where B/Bmsy was generally overestimated and F/Fmsy underesti-
mated (Figure 6).

Areas-as-fleets approach
Like the aggregated approach, when fishing mortality was equally
distributed, the areas-as-fleets approach led to unbiased and precise
estimates in model outcomes for the three types of life histories,
regardless of somatic growth variability (Figures 3–6). Only when
variability in somatic growth was present, L∞ and k were estimated
in-between the true values and R0 was overestimated (∼ +20%) for
cod cases (Figures 4 and 6).

An uneven distribution in fishing mortality produced very im-
precise SSB estimates for sardine and rockfish (Figures 3 and 5). SSB

was largely underestimated (∼ −70%) for sardine and usually over-
estimated for rockfish. An overestimation in SSB (∼ +30%) was
also observed for cod cases. L∞ was underestimated (∼ −50%) and
M overestimated (∼ +50%) for sardine. R0 was generally overes-
timated and F/Fmsy underestimated for the three types of life his-
tories, and this was aggravated when spatial variability in somatic
growth was present (Figures 4 and 6). Likewise, B/Bmsy was overes-
timated for cod and rockfish (F:10%:100%) but underestimated for
sardine cases.

Spatially explicit approach
A spatially explicit model always produced precise and unbiased
model outcomes for the three types of life-histories regardless of
the fishing mortality distribution between areas or the presence of
somatic growth variability (Figures 3–6).

Temporal variability
We observed that varying L∞, k, or γc produced different degrees of
variability in mean size-at-age for each type of life history (Figure 2).
For example, varying k produced negligible variations but varying
L∞ led to large variability in mean size-at-age for rockfish.
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 G. M. Correa et al.

Figure 5. Time series of RE in estimated spawning stock biomass (SSB) over time for scenarios when the OM simulated spatial variability in
fishing mortality and somatic growth. The black line represents the median, while the gray shaded area represents the % quantile. The
horizontal dotted line represents no bias over the time series would occur. The OM and EM configurations are on the left. “Aggreg” =
Aggregated approach. “A-a-F” = Areas-as-fleet approach. “Sp. expl.” = Spatially explicit. Years do not include the burn-in period and vary by life
history (see Table ).

Constant assumption
Ignoring year-specific temporal variability, either by varying k or
L∞ in the OM, generally led to cyclic patterns of biased SSB esti-
mates over time (Figure 7) when the simulated variability in mean
size-at-age was large. This was observed for sardine and cod cases
when k varied in the OM, and for rockfish when L∞ varied. This
cyclic pattern in biased SSB estimates was also observed for the
cohort-specific variability, although not as large as the year-specific
case, and only for cod and sardine. Biological parameters estimates
were unbiased and precise when variability mean size-at-age was
small but led to over- and underestimation (< 20%) in k and man-
agement quantities when the variability became large either for
year- and cohort-specific temporal variability (Figure 8).

Including an environmental series
We noticed that observed mean size-at-age (MLa) was highly cor-
related with the true simulated variability in the OM (Figure S15).
When this index was included in the EM to account for temporal
variability in mean size-at-age, the cyclic patterns of bias in SSB es-
timates observed for the constant approach disappeared but preci-

sion was not improved (Figure 7). In some cases, SSB was constantly
underestimated over time (∼ 10%), especially when the simulated
variability in somatic growth was small. Biological parameters esti-
mates were unbiased and precise when k and γc varied over time in
the OM, but there was still over- and underestimation (<20%) in
k and management quantities when the variability in mean size-at-
age was simulated by changing L∞ (Figure 8).

Estimating deviates
When deviates were estimated in the EM, it generally led to unbi-
ased SSB estimates over time, although a constant overestimation
(<10%) was observed for cod and rockfish when k varied tempo-
rally in the OM (Figure 7). Biological parameters estimates were
precise and unbiased in most cases, but we observed a large over-
estimation (∼ 45%) in k and small underestimation (∼ 10%) in L∞
for rockfish when the OM simulated variability in L∞ (Figure 8).
Likewise, overestimation (∼ 25%) was reported for the same pa-
rameter when L∞ varied temporally in the OM. Management quan-
tities reported small bias (<10%), especially for the cohort-specific
variability.
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Figure 6. Median (point) and % quantiles (lines) of RE in compared model outcomes. The OM simulated two areas with variability in fishing
mortality and somatic growth. The horizontal dotted line represents no bias over the time series would occur. The OM and EM configurations
are on the left. “Aggreg” = Aggregated approach. “A-a-F” = Areas-as-fleet approach. “Sp. expl.” = Spatially explicit. Blue, red, and black colour
represent RE values for Area , Area , and the entire area, respectively.

Discussion
Our results suggest that, in some cases, ignoring spatial or temporal
variability in somatic growth may lead to serious bias in biological
parameter estimates and management quantities for the three types
of life histories. These findings can be applicable to a wide range
of study cases, especially because variability in somatic growth is
more common than rare. A survey conducted in the United States
found out that most fish stocks have some kind of spatial structure,
usually in somatic growth; however, it is not commonly modelled
in stock assessment models (Berger et al., 2017). We found that ac-
counting for somatic growth variability through diverse strategies
(e.g. implementing a spatially explicit model, calculating an envi-
ronmental index from observed data, or estimating annual devi-
ates) may solve this problem, which can be useful for fisheries sci-
entists when implement a stock assessment model. However, they
might potentially lead to other challenges that are discussed in this
section.

Spatial variability
The aggregated approach completely ignores any type of spatial
structure and combines information from areas that have different
biological traits or fishing patterns. Using a simulation approach,

Punt et al., (2015, 2016) investigated how different assessment con-
figurations performed when there was spatial heterogeneity in re-
cruitment, fishing mortality, and somatic growth for pink ling. They
found that aggregated models produced biased and imprecise SSB
estimates, such as was observed in this study. Similar results were
also found in Cope and Punt (2011) for spatial heterogeneity in
catch histories. In our study, we noticed that when fishing mortal-
ity was equally distributed between areas, the aggregated approach
reported quiet good performance for the three types of life histo-
ries regardless somatic growth variability. This result highlights that
spatial variation in somatic growth might not be enough to cause
bias or bad precision in stock assessment outcomes. Conversely, an
uneven distribution of fishing mortality affected considerably the
performance of this approach and was aggravated when somatic
growth was also present, leading to bias in important management
quantities that may affect the correct evaluation of the status of a
stock. This poor performance may be principally caused by the ag-
gregation of contrasting compositional data produced by quite dif-
ferent fishing intensities instead of variations in mean size-at-age
caused by spatial changes in growth parameters.

The areas-as-fleet approach has been applied previously to ac-
count for the spatial structure of fishery selection in stock assess-
ment models (Hurtado-Ferro et al., 2014; Waterhouse et al., 2014).
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Figure 7. Time series of RE in estimated spawning stock biomass (SSB) over time. The black line represents the median, while the gray shaded
area represents the % quantile. The horizontal dotted line represents no bias over the time series would occur. The OM and EM
configurations are on the left. Years do not include the burn-in period and vary by life-history (see Table ).

It does not aggregate data and keeps fleets separated; therefore se-
lectivity parameters are estimated independently. This approach
has also been used to test for spatial variability in somatic growth
for pink ling (Punt et al., 2015, 2016), finding poor performance
when spatial variability in growth, recruitment, and fishing mor-
tality were present. In our study, this approach reported the worst
performance, especially for sardine and rockfish, when variability
in fishing mortality was present and was exacerbated when vari-
ability in somatic growth was also simulated. This bad performance
is likely due to the stock assessment model tries to estimate unique
biological parameters to fit observed compositional data that is sim-
ulated from distinct growth parameters. Therefore, the areas-as-
fleets approach may not be appropriate to account for spatial het-
erogeneities in model components.

Spatially explicit models led to the best estimates and it is the rec-
ommended approach to account for differences in mean size-at-age
in space, although it might lead to other issues such as low conver-
gence rates or long run times, especially for long-lived species (e.g.
rockfish) in which a large number of parameters is estimated. In
general, stock assessment models that ignore the spatial structure of
a population perform worse in comparison to models that include
it (Cope and Punt, 2011). There have been efforts to migrate from
single to multiple-area stock assessment models in recent years and

results have been promising (Punt et al., 2018; Vigier et al., 2018). It
is known that their implementation is important to account for spa-
tial variability in fishing patterns between areas that can arise due to
political, economic, or area closures reasons (Cope and Punt, 2011),
but also to account for spatial variability in biological traits such as
somatic growth, which can also exacerbate the bias produced by
other model components. Nevertheless, implementing a spatially
explicit model might not be an easy task since there should be a
good amount of data and research about how different biological
processes vary in space and time, which might only be suitable for
well-studied fish stocks.

Analysing observed data to recognize spatial differences in fish-
ing mortality and growth might also be useful. We observed that
simulated CPUE was highly impacted by differences in fishing in-
tensity, but also by somatic growth for cod and rockfish cases. The
analysis of compositional data and age-length information might
also be important to detect spatial variability in other biological
traits. To conclude, when there is no evidence of spatial variability
in fishing mortality, any evaluated approach might produce good
model outcomes. However, only a spatially explicit model may lead
to precise and unbiased results when spatial variability in fish-
ing mortality and somatic growth are present for any type of life
history.

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/78/5/1900/6287349 by N
O

AA C
entral Library user on 08 Septem

ber 2021



Spatial and temporal variability in somatic growth 

Figure 8. Median (points) and % quantiles (lines) of RE in important estimated parameters. The horizontal dotted line represents no bias
over the time series would occur. The OM and EM configurations are on the left.

Temporal variability
Variations in mean size-at-age influence directly the total biomass
of a stock by changing the weight of individuals. Therefore, low-
biomass periods are expected when small mean size-at-ages dom-
inate the population and vice versa, and if this variability is not
considered, bias in biomass estimates may be usual as observed
in our results. Only two previous studies have explored the con-
sequences of somatic growth temporal misspecification in stock as-
sessment models using a simulation approach, exclusively focused
on the year-specific temporal variability (Lee et al., 2018; Stawitz et
al., 2019). They also found imprecise and biased stock assessment
estimates when year-specific temporally variable growth was ig-
nored. For example, Lee et al. (2018), based on rockfish life-history
parameters, observed large bias in SSB and recruitment estimates
when year-specific temporal variability in growth was ignored, but
this was improved by including an environmental index linked to
growth parameters (k and L∞) in the EM. However, this environ-
mental index should be precise enough because, if not, it might not
improve the model performance (Lee et al., 2018).

In our study, we observed that including an observed environ-
mental index (MLa) to account for both types of temporal variabil-
ity (year and cohort-specific) in mean size-at-age generally reduced
bias in SSB estimates, but it did not produce any effect when there
was not a large variability in the OM (e.g. changes in L∞ for cod or
changes in k for rockfish). The relative good performance of MLa

might be due to that indicator is precise enough to account for the
simulated variability as observed in Lee et al. (2018). We found that
MLa for younger ages were more correlated with the true variability,
either when k, L∞, or γc varied, due to the changes in growth pa-
rameters affect directly younger ages. For older ages, observed mean
size-at-age is not only a cause of variation in growth parameters at
the last year, but also from previous years and that may produce
noise in the MLa time series. MLa is also an indicator relatively easy
to estimate (Silva et al., 2008; Hunter et al., 2016) as long as length
and age data are appropriately sampled and treated (e.g. selectivity
effects on sampled data); therefore, calculating MLa and using it as
an indicator of somatic growth variability might be recommended.

Stawitz et al. (2019), based on petrale sole (Eopsetta jordani) life-
history parameters, found bias in management reference quantities
when interannual or regime-like year-specific temporal variability
in growth parameters (k and L∞) was ignored, but that bias was gen-
erally eliminated by estimating deviates in the EM. In our study, we
also evaluated estimating deviates rather than including an environ-
mental index to account for temporal variability in somatic growth.
Estimating deviates improved the accuracy of SSB, biological pa-
rameter, and management quantities estimates for the three types
of life-history, reporting a better performance than including an
environmental index. However, estimating deviates increases con-
siderably the model complexity since an extra parameter per year
is estimated within the model, which might increase run times or
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decrease convergence rates, especially for long-lived species such as
rockfish. However, it might be suitable for short or medium-lived
species, especially when there is evidence of temporal variability in
somatic growth but there is no knowledge about its environmental
driver.

Impacts of cohort-specific temporal variability in somatic
growth on the performance of stock assessment models have
received less attention in comparison to the year-specific case
(Whitten et al., 2013). Whitten et al., (2013) observed that estimat-
ing deviates that varied mean size-at-age by cohort improved model
fitting in comparison to models that assumed constant growth for
blue grenadier (Macruronus novaezelandiae). In our study, when
cohort-specific variability was ignored, we observed bias in SSB es-
timates over years for sardine and cod cases, but not as large as the
year-specific case. The smaller bias for the cohort-specific case may
be caused by a “buffering effect,” where consecutive years or short
periods with slow and fast somatic growth across cohorts might
buffer their impacts on annual SSB estimates. This can also explain
why ignoring cohort-specific temporal variability for rockfish did
not lead to bias in SSB since this buffering effect might be more
marked for long-lived species. Therefore, accounting for cohort-
specific variability in somatic growth may be important for short
and medium-lived species and should be considered in stock as-
sessment models.

Caveats and future research
A common caveat in simulation-estimation experiments is that pa-
rameters are fixed at their true value (assumed to be known) or their
starting points are the true values. This hardly ever happens in real
cases and needs further research to understand if that improves or
degrades the EM performance. For example, steepness (h), a param-
eter of the stock–recruitment relationship that provides informa-
tion about the stock productivity, was assumed to be known; how-
ever, it is one of the most uncertain and critical quantities in stock
assessment models and it is not easily estimated in real cases (Lee
et al., 2012).

Simulated data types might impact model performance. In our
study, length and age compositional data were considered, which
may be playing an important role to estimate biological parameters
(Magnusson and Hilborn, 2007; Ono et al., 2015). However, con-
ditional age-at-length data (CAAL) or weight-at-age may be also
available for some stocks, being the former particularly informative
to estimate growth parameters (Piner et al., 2016). The quantity of
data is another factor to be considered, longer or shorter periods of
data might impact the estimation of important biological parame-
ters (Ono et al., 2015; Stawitz et al., 2019). For example, having a
long time series of age compositions might help to estimate natu-
ral mortality and recruitment precisely (Magnusson and Hilborn,
2007). In our study, we simulated data for most years; however, this
might not hold for many fish stocks and caution should be taken in
those cases.

In some cases, the assumed boundaries among areas with dif-
ferent biological parameters lack a biological basis and are set due
to management or political reasons (e.g. boundaries between coun-
tries or states) (e.g. Williams et al., 2012; Adams et al., 2018). In this
study, we assumed that the boundary between areas with distinct
somatic growth was known; however, this ecological limit might
not be totally identified in some cases or wrongly assumed as politi-
cal boundaries. Some new methods have been proposed to identify
these boundaries when spatial somatic growth variability is present

and have shown promising results that might be applied to real cases
(Kapur et al., 2020). However, it is still unknown how an incorrect
boundary between areas with a distinct growth parameter can affect
the performance of spatially explicit models.

The main challenges in implementing spatially explicit stock as-
sessment models are the lack of information on movement rates and
patterns, reproductive isolation, and stock composition (Cadrin
and Secor, 2009). Here, we assumed no movement between areas
post settlement, which applies fairly generally, including some rock-
fish, but is simplified for other species. Movement patterns are di-
verse and particular for every stock, which might affect our results
in several ways. For instance, movement of individuals from slow-
to fast-grow areas and/or vice versa might mitigate or aggravate the
consequences of ignoring spatial variability in growth observed in
our study. The study of movement and how it affects spatially ex-
plicit stock assessment models is an active area of research in fish-
eries sciences and future studies might consider different movement
patterns and their interactions with spatial variability in somatic
growth and fishing mortality simultaneously.

Currently, spatially explicit stock assessment models usually in-
corporate more than two areas (Punt et al., 2015, 2018; Vigier et al.,
2018). The inclusion of more areas and different recruitment distri-
bution among them need also be evaluated, which can lead to com-
plexities and further non-linearities in results. Also, we only evalu-
ated changes in classic growth parameters such as k and L∞; how-
ever, other parameters in the growth equation might also vary the
mean size-at-ages substantially. For example, Lmin [see (1)] might
produce larger variations for species such as sardines due to varia-
tion in growth in early life stages.

Conclusion
This study extends previous analyses on the consequences of ignor-
ing spatial and temporal variability in somatic growth, commonly
observed for many fish stocks, in stock assessment models for three
types of life histories. We principally found that ignoring temporal
and spatial growth variability, in some cases, can lead to biased bi-
ological parameter estimates and management quantities. We also
explored various ways of taking into account this variability that can
be considered by fisheries scientists when implementing a stock as-
sessment model.
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Supplementary material is available at the ICESJMS online version
of the manuscript.
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Appendix A: observed environmental index
(Env index) derivation
We derived the observed environmental index (Env index) in-
cluded in the EM that accounted for temporal variability in so-
matic growth. Including the annual PDO index, used to simulate
the true variability in OM, would implicitly assume that fisheries
scientists precisely know what environmental variable drives tem-
poral changes in somatic growth, an unrealistic case that would
overestimate the performance of the EM. Fisheries scientists usu-
ally examine variations in somatic growth by analysing ring widths
of otoliths (e.g. Black, 2009) or length and age data collected by
fishery-independent or dependent sources. Then, they (i) fit a von
Bertalanffy growth curve to size-at-age data and look at changes
in the k or L∞ parameter (e.g, Adams et al., 2018; Li et al., 2018),
or (ii) look at changes in mean size-at-age over time or space (e.g.
Feltrim and Ernst, 2010; Ciannelli et al., 2020). These indicators of
somatic growth might be then related to one or several environmen-
tal variables (e.g. temperature, primary productivity; Arnekleiv et
al., 2006), which is finally included in the stock assessment model
and linked to a growth parameter (e.g. k, L∞, or γc) to alter the mean
size-at-age relationship within the model.

We followed the next steps to obtain a realistic environmental
index that can be included in the EM to account for temporal vari-
ation in mean size-at-age (based on Pardo et al., 2013):

(i) Using numbers-at-age, mean sizes-at-ages, and standard de-
viation of sizes-at-ages information generated by the OM that simu-
lated year or cohort-specific temporal variability in somatic growth,
we simulated lengths of fish individuals by age (in the population).

(ii) To simulate observed data, we randomly drew length sam-
ples by age from data generated in (i). The sizes of these samples
ranged from 200 individuals for younger ages to a single individual
for older ages.

(iii) We calculated the mean size-at-ages (MLa) from sampled
size data obtained in (ii).

(iv) Steps (i)–(iv) were repeated for all years (y) in a replicate,
obtaining MLa

y .
(v) We calculated the Pearson correlation coefficient of MLa

y with
either ky or L∞y to identify which was the age that led MLa

y to the
closest the true variability in the OM.

We noted that the correlation was stronger between k or L∞ and
MLa for younger ages (results not shown). Therefore, we decided
that using the mean size at a young age was a suitable indicator of
somatic growth variability. Also, it can be used for year and cohort-
specific cases. We selected ages 1.5, 2.5, and 2.5 for sardine, cod,
and rockfish, respectively. Finally, MLa was standardized between
−1 and 1 and then included in the EM as an environmental time
series.
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